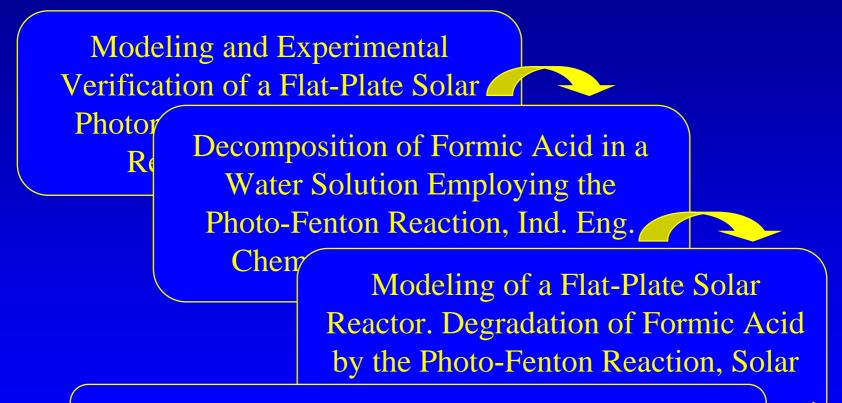
MODELING OF A SOLAR REACTOR FOR WATER PURIFICATION, EMPLOYING THE PHOTO-FENTON REACTION

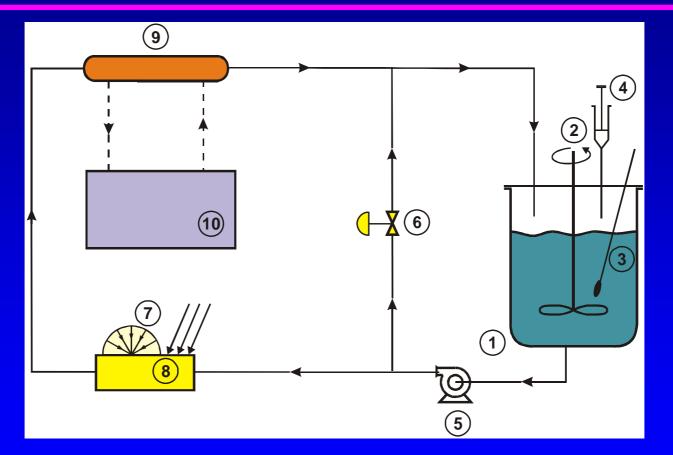
Germán H. Rossetti, Enrique D. Albizzati, and Orlando M. Alfano

Universidad Nacional del Litoral - CONICET Güemes 3450, 3000 Santa Fe, Argentina E-mail: alfano@intec.unl.edu.ar


OUTLINE

- x Introduction
- **x** Mass Balances
- × Kinetic Model
- **x** Radiation Field
- **x** Model Parameters and Numerical Solution
- × Predicted and Experimental Results
- **×** Effects of the Reaction Temperature
- × Final Remarks

INTRODUCTION


- The <u>Fenton reaction</u> is a chemical system involving hydrogen peroxide and ferrous salts that generates highly reactive hydroxyl radicals.
- The oxidation ability of the Fenton mixture can be greatly enhanced using UV (or UV/Vis) radiation: the photo-Fenton Reaction.
- In this work, the degradation of formic acid (a model pollutant) in aqueous solution using the Fenton and photo-Fenton systems is presented.
- The reaction was conducted in a <u>flat-plate solar reactor</u> placed inside the loop of a <u>batch recycling system</u>.

INTRODUCTION: PREVIOUS WORK

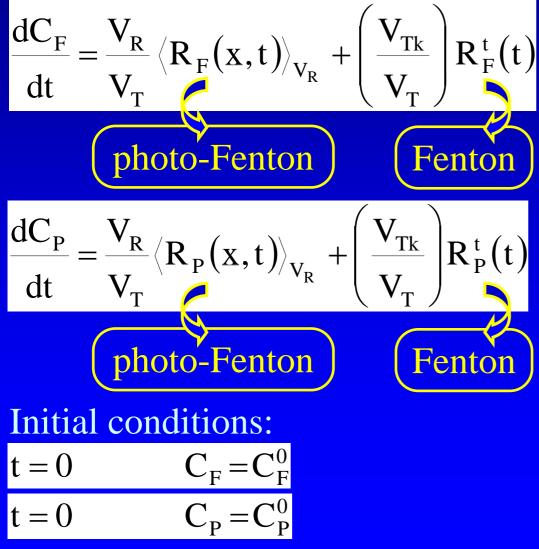
Temperature Effects on the Photo-Fenton Degradation of Formic Acid, ENPROMER 2005, Río de Janeiro, Brasil; III EPOA, Campinas, Brasil.

FLOW SHEET OF THE EXPERIMENTAL DEVICE

<u>Keys</u>: (1) storage tank, (2) stirrer, (3) thermometer, (4) liquid sampling, (5) pump, (6) valve, (7) solar radiation, (8) flat-plate reactor, (9) heat exchanger, and (10) thermostatic bath.

PICTURE OF THE EXPERIMENTAL DEVICE

 Well-stirred batch recycling photoreactor



 × Flat-plate solar reactor
 × Broadband UV Radiometer CUV3 of Kipp & Zonen

OUTLINE

- **x** Introduction
- - × Kinetic Model
 - **x** Radiation Field
 - × Model Parameters and Numerical Solution
 - × Predicted and Experimental Results
 - **×** Effects of the Reaction Temperature
 - × Final Remarks

MASS BALANCES (F: formic acid; P: Hydrogen Peroxide)

- $R_{F}^{t}(t) \propto V_{R}/V_{T} \text{ for photo-Fenton}$ $\propto V_{Tk}/V_{T} \text{ for Fenton}$
 - The average value must be retained in order to account for spatial variations of the photo-Fenton reaction rate

 × Spatial variations of the Local Volumetric Rate of Photon Absorption (LVRPA)

OUTLINE

- × Introduction
- × Mass Balances
- 🖙 🗴 Kinetic Model
 - **x** Radiation Field
 - **x** Model Parameters and Numerical Solution
 - × Predicted and Experimental Results
 - × Effects of the Reaction Temperature
 - × Final Remarks

REACTION SCHEME^(*)

Initiation

Propagation

Termination

Decomposition

 $Fe^{3+} + H_2O \xrightarrow{hv} Fe^{2+} + HO_{\bullet} + H^+$ $\overline{\text{Fe}^{3+}} + \overline{\text{H}_2\text{O}_2} \rightarrow \overline{\text{Fe}}^{2+} + \overline{\text{HO}_2} + \overline{\text{H}^+}$ $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO_{\bullet} + HO^{-}$ $H_2O_2 + HO_{\bullet} \rightarrow HO_{2^{\bullet}} + H_2O_{\bullet}$ $H_2O_2 + HO_2 \rightarrow HO \rightarrow HO \rightarrow H_2O + O_2$ $2 \text{ HO} \rightarrow \text{H}_2\text{O}_2$ $2 \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$ $HO_2 \bullet + HO \bullet \rightarrow H_2O + O_2$ $Fe^{3+} + HO_2 \rightarrow Fe^{2+} + H^+ + O_2$ $Fe^{2+} + HO_2 + H^+ \rightarrow Fe^{3+} + H_2O_2$ $HCOOH + HO_{\bullet} \rightarrow CO_{2}\bullet^{-} + H_{2}O + H^{+}$ $CO_2 \bullet^- + O_2 + H^+ \rightarrow CO_2 + HO_2 \bullet$

 $(\mathbf{0})$

 \mathbf{k}_1

 \mathbf{k}_2

 k_3

k_A

k₅

k₆

 \mathbf{k}_7

K₈

k₉

 \mathbf{k}_{10}

 k_{11}

(*) Proposed by Pignatello (1992), De Laat and Gallard (1999)

ASSUMPTIONS FOR THE KINETIC MODEL

The following assumptions have been considered:

- the steady state approximation (SSA) may be applied for highly reactive radicals, such as OHand HO₂-,
- radical-radical termination reactions are neglected as compared with the propagation reactions,
- the ferrous ion concentration remains constant during the reaction time,
- \times the oxygen concentration is always in excess.

KINETIC MODEL

$$R_{F}(x,t) = -\left(\frac{\overline{\Phi}\sum_{\lambda} e_{\lambda}^{a}(x,t)}{1+K_{3}(C_{P}/C_{F})}\right) + \left(1+\frac{\overline{\Phi}\sum_{\lambda} e_{\lambda}^{a}(x,t)}{K_{4}C_{Fe^{3+}}C_{P}}\right)^{1/2} R_{F}^{t}(t)$$

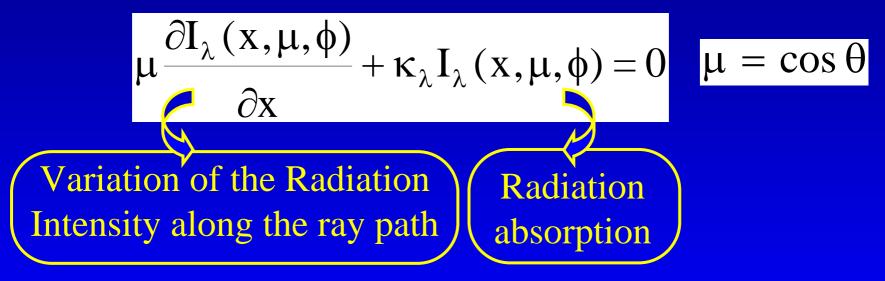
- $\overline{\Phi}$: wavelength-averaged primary quantum yield
- $e_{\lambda}^{a}(x,t)$: spectral LVRPA
- K_i : kinetic parameters (i = 1 to 4)


When $\Sigma_{\lambda} e^{a}(\underline{x},t) = 0$, the pollutant reaction rate is not null. A thermal reaction rate can be identified (Fenton reaction). This term may be represented by the expression:

$$R_{F}^{t}(t) = -K_{1} \frac{1 + K_{2}(C_{P}/C_{Fe^{3+}})}{1 + K_{3}(C_{P}/C_{F})} C_{Fe^{3+}}C_{P}$$

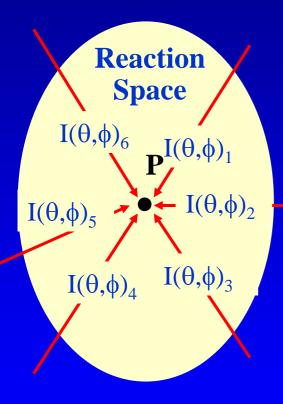
OUTLINE

- × Introduction
- × Mass Balances
- × Kinetic Model
- **Set x** Radiation Field
 - × Model Parameters and Numerical Solution
 - × Predicted and Experimental Results
 - **×** Effects of the Reaction Temperature
 - × Final Remarks


RADIATION FIELD MODELING

Schematic representation of the flat-plate solar reactor
 At the top, a window made of glass was located
 The surface of radiation entrance receives direct solar radiation (q_D) and diffuse solar radiation (q_S)

RADIATION FIELD MODELING


Radiative Transfer Equation:

→ B.C. at x = 0: (i) reflection and refraction at the interfaces and (ii) radiation absorption inside the glass window

→ B.C. at x = L: radiation intensity reaching the reactor bottom is reflected back to the solution in a diffuse manner

EVALUATION OF THE LVRPA

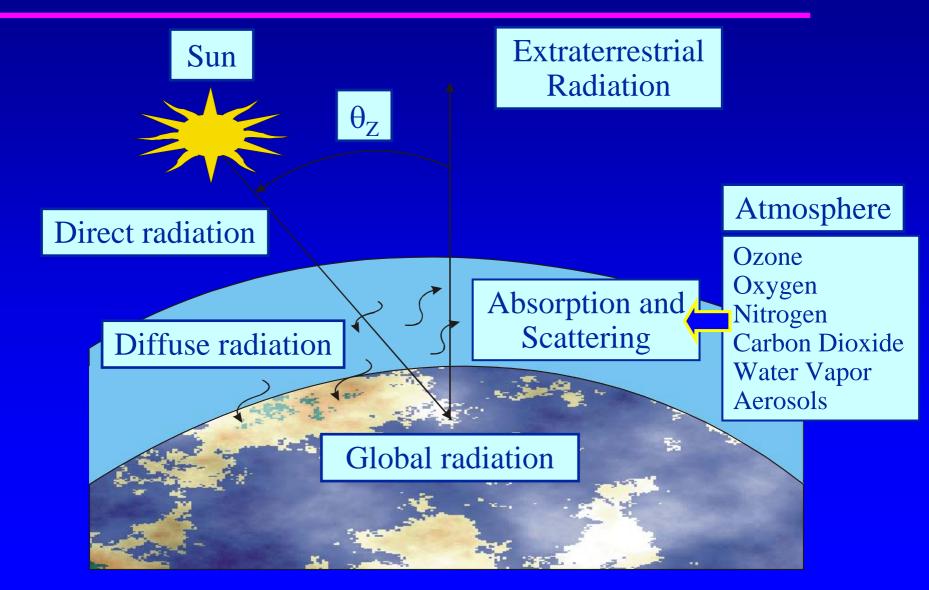
Once the radiation intensity $I_{\lambda}(x,\mu,\phi)$ is obtained, one can compute the LVRPA:

 Radiation may be arriving at one point (P) inside the reaction space from all directions in space

x An integration over all the arriving rays (θ, ϕ) is required:

$$e_{\lambda}^{a}(\mathbf{x}) = \kappa_{\lambda} \int_{0}^{2\pi} d\phi \int_{-1}^{1} \mathbf{I}_{\lambda}(\mathbf{x}, \mu, \phi) d\mu$$

Integrating the previous equation, LVRPA is obtained:


FINAL EXPRESSION OF THE LVRPA

$$e_{\lambda}^{a}(x) = \kappa_{\lambda} \left\{ q_{D,\lambda} \frac{\left[1 - \rho_{a.p}(\mu_{i}^{*})\right] \left[1 - \rho_{p.w}(\mu_{r}')\right] \tau_{\lambda}(\mu_{r}')}{1 - \tau_{\lambda}^{2}(\mu_{r}') \rho_{a.p}(\mu_{r}') \rho_{p.w}(\mu_{r}')} exp(-\kappa_{\lambda}x/\mu_{r}) + \left(1 - \tau_{\lambda}^{2}(\mu_{r}') \rho_{a.p}(\mu_{r}')\right) \tau_{\lambda}(\mu_{r}')}\right) \right\}$$

Direct solar radiation
$$2q_{S,\lambda} \frac{n_{w}^{2}}{n_{a}^{2}} \int_{\mu_{cr}}^{1} \frac{\left[1 - \rho_{a.p}(\mu^{*})\right] \left[1 - \rho_{p.w}(\mu_{r}')\right] \tau_{\lambda}(\mu_{r}')}{1 - \tau_{\lambda}^{2}(\mu_{r}') \rho_{a.p}(\mu_{r}') \rho_{p.w}(\mu_{r}')} exp(-\kappa_{\lambda}x/\mu) d\mu + \int_{0}^{1} exp(-\kappa_{\lambda}x/\mu) d\mu + \int_{0}^{1} exp[-\kappa_{\lambda}(L-x)/\mu] d\mu \right]}$$

Diffuse solar radiation
$$2\rho_{B}q_{B,\lambda} \left[\int_{0}^{1} \rho_{w.p}(\mu) exp[-\kappa_{\lambda}(L+x)/\mu] d\mu + \int_{0}^{1} exp[-\kappa_{\lambda}(L-x)/\mu] d\mu \right]$$

Radiation flux at the reactor bottom

OUTLINE

- x Introduction
- **x** Mass Balances
- x Kinetic Model
- **x** Radiation Field
- See X Model Parameters and Numerical Solution
 - × Predicted and Experimental Results
 - **x** Effects of the Reaction Temperature
 - x Final Remarks

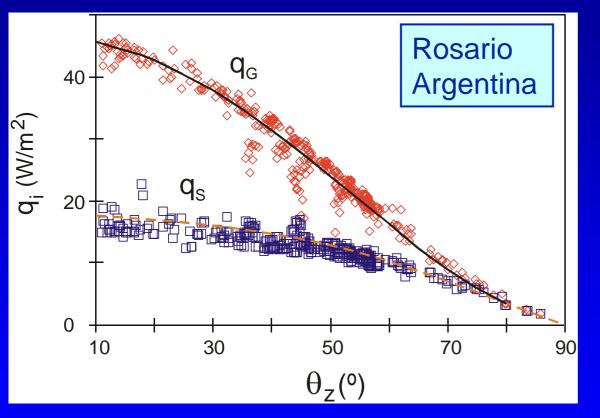
SOLAR RADIATION INCIDENT AT THE REACTOR WINDOW

SOLAR RADIATION INCIDENT AT THE REACTOR WINDOW

→ Global radiation on a horizontal surface at ground level for wavelength λ (Bird and Riordan, 1986):

$$q_{G,\lambda} = q_{D,\lambda} \cos \theta_Z + q_{S,\lambda}$$
 (θ_Z = zenith angle)

× Direct radiation on a surface normal to the sun direction:

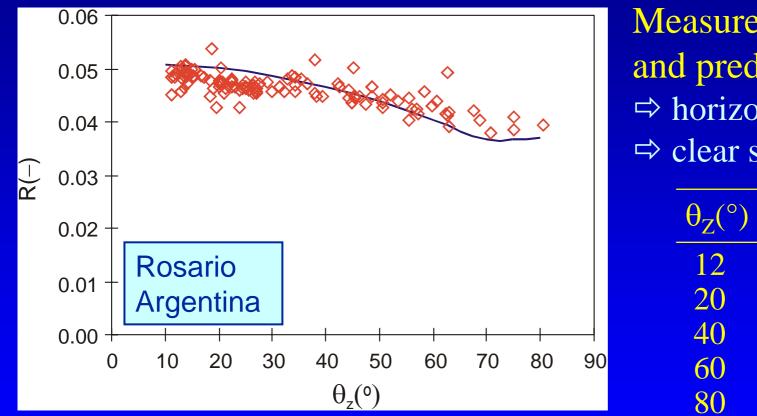

$$q_{\mathrm{D},\lambda} = H_{0,\lambda} D T_{\mathrm{r},\lambda} T_{\mathrm{a},\lambda} T_{\mathrm{w},\lambda} T_{\mathrm{o},\lambda} T_{\mathrm{u},\lambda}$$

× Diffuse radiation on a horizontal surface at ground level:

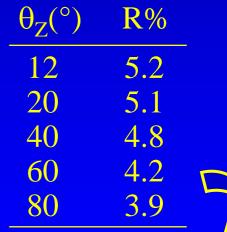
$$q_{s,\lambda} = q_{r,\lambda} + q_{a,\lambda} + q_{g,\lambda}$$

where: Rayleigh scattering $(q_{r,\lambda})$, aerosol scattering $(q_{a,\lambda})$, multiple reflection of radiation between the ground and the air $(q_{g,\lambda})$

GLOBAL AND DIFFUSE UV SOLAR RADIATION

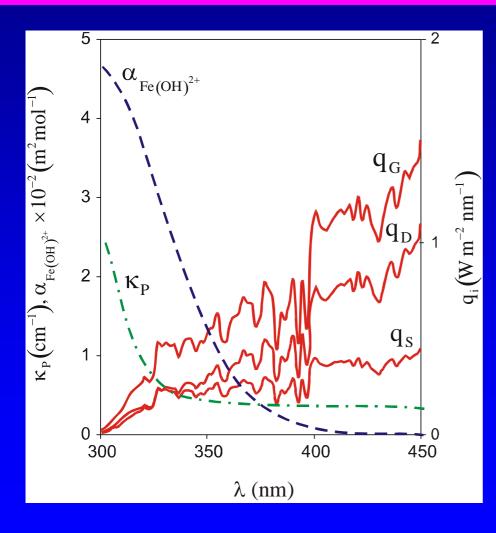


x Measurements and model predictions: > horizontal surface \succ clear sky days x Model predictions: > Global (----) Diffuse (- - -) Measurements: \succ Global (\Diamond)


➤ Diffuse (□)

× Maximum UV solar radiation: $q_{G,max} \cong 45$ W/m² × At $θ_Z > 45^\circ$ → Diffuse radiation > Direct radiation

RATIO OF UV TO TOTAL SOLAR RADIATION (R)



Measurements (◊) and predictions (−): ⇒ horizontal surface ⇒ clear sky days

W Solar radiation: 4 to 5% of the total solar radiation
 R decreases when the zenith angle is increased

SPECTRAL DATA

× Global (q_G), direct (q_D) and diffuse (q_S) solar radiation (Bird and Riordan, 1986) for:
> cloudless sky conditions
> solar zenith angle = 10°

x Molar absorptivity of the iron complex: $\alpha_{Fe(OH)^{2+}}$

× Absorption coefficient of the glass plate: κ_P

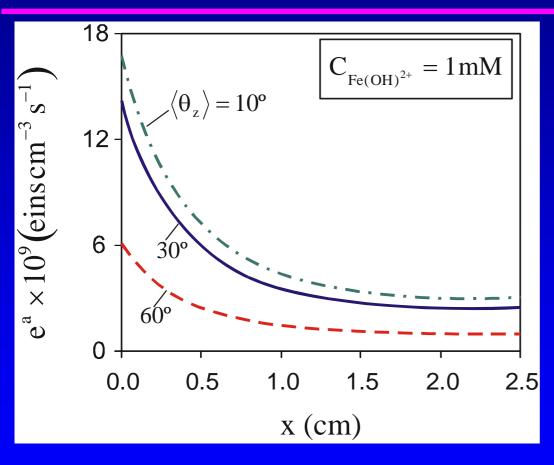
NUMERICAL SOLUTION: COMPUTATIONAL STEPS

Evaluation of the direct and diffuse solar radiation incident

at the reactor

Computation of the LVRPA as a function of position

Evaluation of the formic acid and hydrogen peroxide

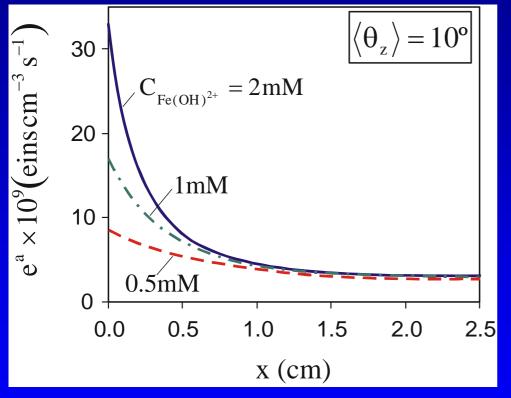

Calculation of the formic acid and hydrogen peroxide concentrations as a function of time

System of two nonlinear, first order, ordinary differential equations

OUTLINE

- × Introduction
- × Mass Balances
- × Kinetic Model
- **x** Radiation Field
- **x** Model Parameters and Numerical Solution
- Predicted and Experimental Results
 - **×** Effects of the Reaction Temperature
 - × Final Remarks

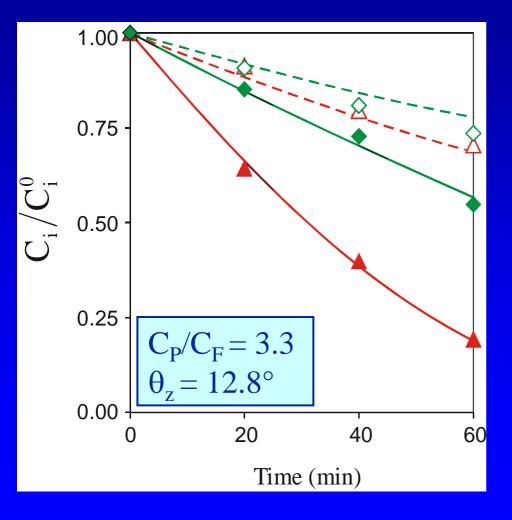
PREDICTIONS OF THE LVRPA


LVRPA as a function of the x-coordinate for:

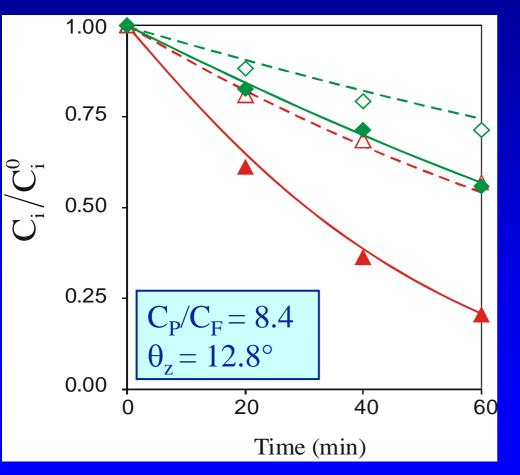
 Three different zenith angles: 10°, 30°, 60°

x Constant absorbing species concentration: $C_{Fe(OH)^{2+}} = 1 \text{ mM}$

→ As expected, the radiation field along the x-coordinate is highly non-uniform: e^a(x = 0.5 L) ≈ 0.2 e^a(x = 0)


PREDICTIONS OF THE LVRPA

e^a as a function of the x-coordinate for: x three different ferric ion concentrations: $C_{Fe(OH)^{2+}} = 0.5, 1, 2 \text{ mM}$ x a constant solar zenith angle: $\theta_{z} = 10^{\circ}$


→ When the optical density is increased the shape of the LVRPA curve becomes steeper

PREDICTED AND EXPERIMENTAL RESULTS (T = 25 °C)

x Model predictions and experimental data as a function of time x Formic acid relative concentration: > Fenton (- - -) > photo-Fenton (→) \times H₂O₂ relative concentration: > Fenton (---) > photo-Fenton (−−−)

PREDICTED AND EXPERIMENTAL RESULTS (25 °C)

- × A similar representation is shown for a higher C_P/C_F
- Conversion for the <u>photo-</u> <u>Fenton</u> reaction is always higher than that obtained with the <u>Fenton</u> reaction
- Model and experimental results show good agreement

 \times The maximum error is 9%

COMPARISON BETWEEN FENTON AND PHOTO-FENTON CONVERSIONS (25 °C)

		Pol	Conversion			
	C_P/C_F	Fenton	ε(%)	photo-Fenton	ε(%)	Enhanc.(%)
Exp. Data	3.3	29.3	_	80.7	-	(175.4)
Predictions	3.3	31.1	6.1	81.0	0.4	160.4
Exp. Data	5.4	37.6	-	80.6	-	114.4
Predictions	5.4	39.7	5.6	80.2	0.5	102.0
Exp. Data	8.4	43.2	-	79.3	-	83.6
Predictions	8.4	45.7	5.8	78.6	0.9	72.0

 \times A conversion of 81% has been achieved for the lowest C_P/C_F

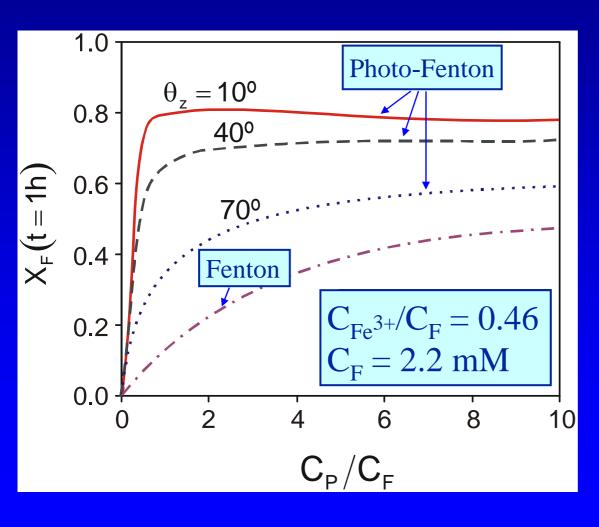
× The photo-Fenton system produces a conversion up to 175% greater than that obtained with the Fenton reaction (C_P/C_F =3.3)

COMPARISON BETWEEN FENTON AND PHOTO-FENTON CONVERSIONS (25 °C)

		Pol	Conversion			
	C_P/C_F	Fenton	ε(%)	photo-Fenton	ε(%)	Enhanc.(%)
Exp. Data	3.3	29.3	_	80.7	_	175.4
Predictions	3.3	31.1	6.1	81.0	0.4	160.4
Exp. Data	5.4	37.6	-	80.6	-	114.4
Predictions	5.4	39.7	5.6	80.2	0.5	102.0
Exp. Data	8.4	43.2	-	(79.3)	-	83.6
Predictions	8.4	45.7	5.8	78.6	0.9	72.0

Notice that the photo-Fenton conversion decreases when the C_P/C_F initial molar ratio is increased.

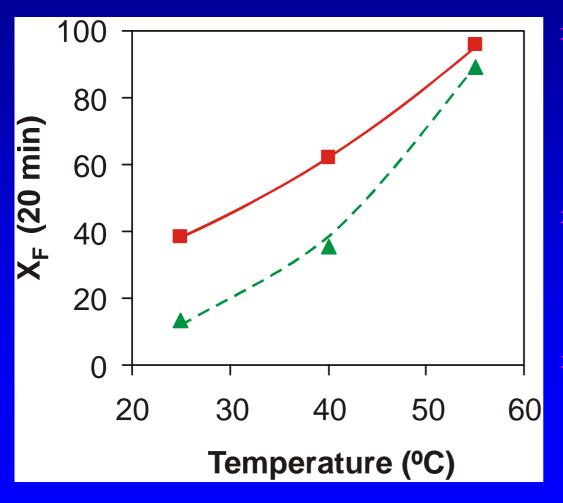
EFFECTS OF THE H_2O_2 ON FORMIC ACID CONVERSION (T = 25 °C)


The change in the H_2O_2 concentration (C_P) may have two opposite effects:

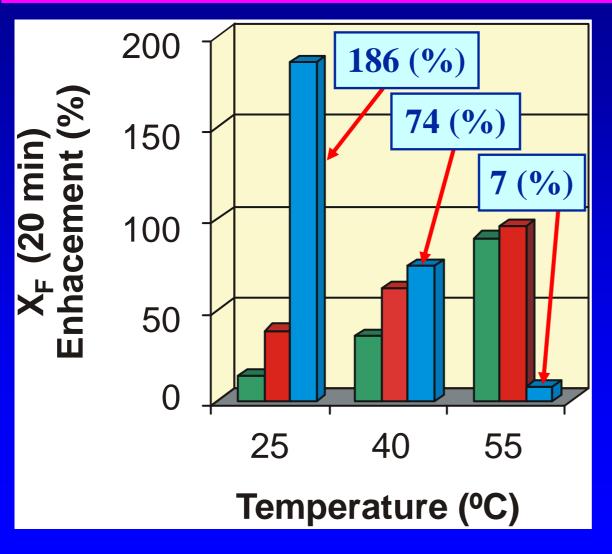
- \times At low C_P, ferrous ion (Fe²⁺) generation may be too low and so will be the OH• generation.
- × At high C_P , H_2O_2 acts as a radical trapping agent, thus competing with the pollutant degradation path and rendering lower degradation rates:

 $H_2O_2 + HO \rightarrow HO_2 + H_2O$

× Thus, an optimal molar ratio C_P/C_F should be expected.


PARAMETRIC STUDY: EFFECTS OF THE H₂O₂ ON FORMIC ACID CONVERSION

X_F(t = 1 h) vs. C_P/C_F: ◆ Fenton and ph-Fenton ◆ $θ_Z = 10^\circ$, 40°, 70°


- $\hat{\upsilon}$ At high values of θ_Z , increasing the C_P/C_F ratio increases the conversion

COMPARISON BETWEEN FENTON AND PHOTO-FENTON CONVERSIONS (t = 20 min)

Model predictions of X formic acid conversion: > Fenton (- -) ▷ photo-Fenton (——) **Experimental data:** X \succ Fenton (v) ▷ photo-Fenton (■) Increasing the reaction temperature decreases the enhancement of the pollutant conversion

POLLUTANT CONVERSION AND CONVERSION ENHANCEMENT (t = 20 min)

- VV solar radiation improves the effectiveness of the Fenton process
- For the lowest temperature 25°C, the pollutant conversion is significantly increased
- Intermediate behavior for 40°C
- For the highest temperature 55°C, this effect is less important

FINAL REMARKS

- Increased reaction temperature can enhance the reaction rate of the Fenton and photo-Fenton processes.
- However, at higher temperatures: (i) this conversion enhancement is less important and (ii) the efficiency of hydrogen peroxide declines: decomposition of H_2O_2 into oxygen and water (Malik and Saha, 2003).
- It is possible to take andvantage of the natural temperature of a wastewater at the end of the process (in the textil industry: Rodríguez et al., 2002).
 - Possibility of a combined photochemically and thermally enhanced Fenton process, using solar energy (UV/Vis + IR photons: Sagawe et al., 2001).

THANKS

- x Dr. Rubén D. Piacentini, Grupo de Energía Solar, Instituto de Física Rosario (IFIR), Rosario Argentina
- × UNIVERSIDAD NACIONAL DEL LITORAL (UNL)
 (National University of Litoral, Santa Fe Argentina)
- CONSEJO NACIONAL DE INVESTIGACIONES
 CIENTIFICAS Y TECNICAS (CONICET) (National
 Council for Science and Technology of Argentina)
- X AGENCIA NACIONAL DE PROMOCION CIENTIFICA
 Y TECNOLOGICA (ANPCYT) (National Agency for the
 Promotion of Science and Technology of Argentina)